

CRM-91HE/UNI:8595188118958
CRM-91HE /UNI + potentiometer: 8595188142052 Potentiometer: 8595188125215

Technical parameters	CRM-91HE
Number of functions:	10
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Burden (max.):	3 VA 1.7 W
Max. dissipated power:	4 W (Un + terminals)
Supply voltage tolerance:	-15 \%; +10 \%
Supply indication:	green LED
Time ranges:	0.1 s-10 days
Time setting:	rotary switch, external potentiometer
Time deviation:	5\%-mechanical setting
Repeat accuracy:	0.2 \% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)
Current rating:	16 A/AC1
Breaking capacity:	4000 VA/AC1, 384 W/DC
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	250 V AC/24V DC
Output indication:	multifunction red LED
Mechanical life:	10.000 .000 ops.
Electrical life (AC1):	100.000 ops.
Controlling	
Control voltage:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Consumption of input:	AC 0.025-0.2 VA/DC 0.1-0.7 W
Load between S-A2:	Yes
Glow-tubes:	No
Control. terminals:	A1-S
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front panel/IP20 terminals
Overvoltage category:	III.
Pollution degree:	2

solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12) $90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$

$$
75 \mathrm{~g}(2.6 \mathrm{oz} .)
$$

Weight:
Standards:
EN 61812-1

Potentiometer

$47 \mathrm{k} \Omega$, linear
IP 65 from front side/IP20 from back side
1.5 with sleeve/without sleeve max. 2.5 (AWG 12)

$$
22 \mathrm{~g}(0.8 \mathrm{oz} .)
$$

see page Accessories

- Control by external control unit - potentiometer (can be placed/mounted for example on switch board doors or in panel).
- 10 functions:

5 time functions controlled by supply voltage
4 time functions controlled by control input
1 function of latching relay.

- Possible to connect external potentiometer - max. distance 10 m (32.8 ft .) from relay.

Description

Connection

Symbol

Function

For a description of the functions on page 15

Function

ON DELAY
When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function.
b

C

FLASHER - OFF first

When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

FLASHER - ON first

When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t . This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

SINGLE SHOT
Upon application of input voltage U , the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. During time-out, the trigger signal S is ignored. The relay resets by applying the trigger switch S when the relay is not energized.

SINGLE SHOT falling edge

Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. At the end of the preset time t, the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to time out t (before preset time elapses). Continuous cycling of the trigger switch S at a rate faster than the preset time will cause the relay contacts R to remain closed. If input voltage U is removed, relay contacts R return to their shelf state.

ON/OFF DELAY

Input voltage U must be applied continuously, When trigger switch S is closed, time delay t begins. When time delay t is complete, relay contacts R change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state.

MEMORY LATCH

Input voltage U must be applied continuously Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

PULSE GENERATOR 0.5 s

Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t . Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

